
Manual Two axis inclinometer TILT001-2AO-UART

Features

- Two axis inclination measurement
- Sensor seperated from printed circuit board
- UART serial interface.
- Two software configurable analog outputs.
- Small footprint.
- Desktop software.

Section 1 - Contents

Section	Description	Page
	Title	1
1	Contents	2
2	General description	3
3	Technical specifications	4
4	Software commands	5
5	Screenshots PC application	7
6	Analog outputs	9
7	Serial port interface	10
8	Pin configuration ADXL213	11
	Standard Legal Stuff	12

Section 2 - General description

The TILTOO1-2AO-UART is a two axis intelligent inclinometer. The sensor part is seperated from the printed circuit board. This allows for inclination measurement in small spaces. Commands and data can be send to or received from the module through an onboard UART serial interface. The module is equipped with two analog outputs. On these outputs digital inclination data is translated to corresponding voltages. One of the voltage outputs can be configured to represent the vectorial addition of the X-axis and Y-axis inclination values.

Section 3 - Technical specifications

Electrical			
Supply voltage	6V15V		
Power consumption	10mA at 12V		
Analog outputs(2)	0 5V (12-bit resolution)		
Serial interface	UART (3.3V logic)		

Mechanical			
Board size (length x width x height)	26mm × 11mm × 4mm		
Sensor size (length x width x height)	5mm × 5mm × 2mm (ADXL213)		
Distance sensor board	max. 7 cm		

Environmental	
Operating temperature	-10°C +30°C

Measurement		
Number of axes	2	
Range per axis inclination / acceleration	70° / 1000mg	
Inclination resolution / accuracy	0.1° / 0.2°	
Acceleration resolution / accuracy	1 mg / 5 mg	

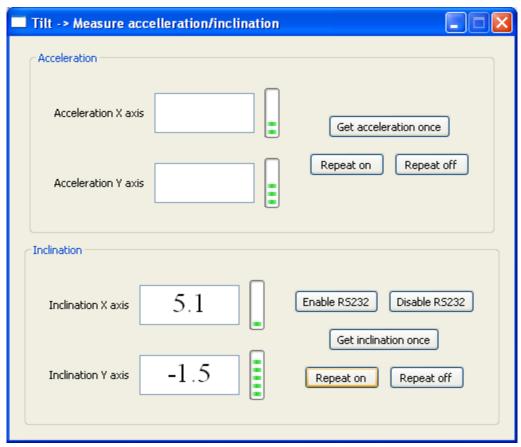
Software	
UART communication parameters	9600 baud, 8 databits, 2 stopbits, no parity
Communication protocol	ASCII commands (see table)
Desktop application	Windows/x86

Section 4 - Software commands

With the supplied PC application program (or a third-party terminal program) it is possible to communicate with the module. Commands are implemented to perform calibration, change operational mode, request measurements for inclination and identify embedded software.

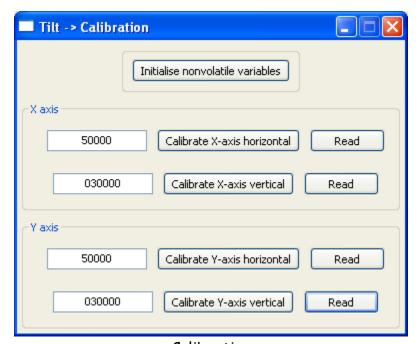
Test	Description	Answer
<cr></cr>	Software version	softw,0105 <crlf></crlf>
getRate <cr></cr>	Update rate per second	rate,7 <crlf></crlf>

Measurement	Description	Answer
getAccel <cr></cr>	Acceleration values for X-axis and Y-axis	accelX,300 <crlf> accelY,-600<crlf></crlf></crlf>
	7-uxis	accers, -600 cmis
repAccelOn <cr></cr>	Acceleration values for X-axis and	
	Y-axis continuously.	
repAccelOff <cr></cr>	Repeat function off for	
•	accelleration	
getIncl <cr></cr>	Inclination values for X-axis and	inclX,-15 <crlf></crlf>
	Y-axis	incly, 3 <crlf></crlf>
repInclOn <cr></cr>	Inclination values for X-axis and	
•	Y-axis continously.	
repInclOff <cr></cr>	Repeat function off for inclination	


Initialisation	Description	Answer
initNv <cr></cr>	Set calibration variables to default	
setDaMode,4 <cr></cr>	Configure analog output mode	
getDaMode <cr></cr>	Read current analog output mode	daMode,3 <cr></cr>
rs232On <cr></cr>	Enable inclination data to serial port	
rs232Off <cr></cr>	Disable inclination data to serial port	

Calibration	Description	Answer
setCalXh <cr></cr>	Set calibration value for X-axis horizontal	
setCalXv <cr></cr>	Set calibration value for X-axis vertical	
getCalXh <cr></cr>	Get calibration value for X-axis horizontal	calXh,50000 <crlf></crlf>
getCalXv <cr></cr>	Get calibration value for X-axis vertical	calXv,30000 <crlf></crlf>
setCalYh <cr></cr>	Set calibration value for Y-axis horizontal	
setCalYv <cr></cr>	Set calibration value for Y-axis vertical	
getCalYh <cr></cr>	Get calibration value for Y-axis horizontal	calYh,50000 <crlf></crlf>
getCalYv <cr></cr>	Get calibration value for Y-axis vertical	calyv,30000 <crlf></crlf>

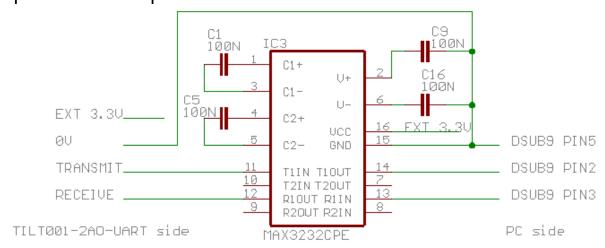
Section 5 - Screenshots PC application


Main window

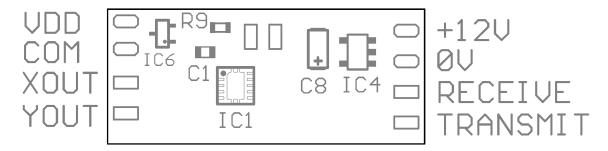
Display inclination or acceleration

Configuration analog outputs

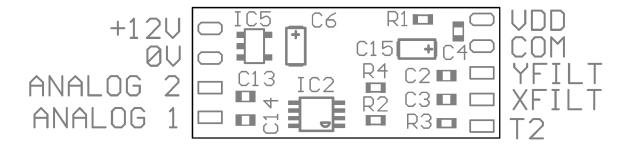
Calibration

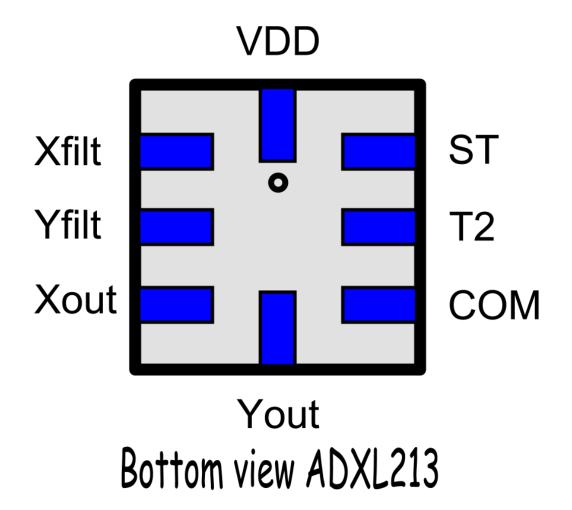

Section 6 - Analog outputs

Depending on one of eight different modes inclination angles are translated to voltage outputs.


Mode	Range (X, Y)	Analog output 1 [mV]	Analog output 2 [mV]
0	-5° +5°	2500 + (500 * X)	2500 + (500 * Y)
1	-10° +10°	2500 + (250 * X)	2500 + (250 * Y)
2	-16° +16°	2500 + (150 * X)	2500 + (150*Y)
3	-25° +25°	2500 + (100 * X)	2500 + (100 * Y)
4	-5° +5°	$500*\sqrt{(X^2+Y^2)}$	$500*\sqrt{(X^2+Y^2)}$
5	-10° +10°	$250*\sqrt{(X^2+Y^2)}$	$250*\sqrt{(X^2+Y^2)}$
6	-16° +16°	$150*\sqrt{(X^2+Y^2)}$	$150*\sqrt{(X^2+Y^2)}$
7	-25° +25°	$100*\sqrt{(X^2+Y^2)}$	$100*\sqrt{(X^2+Y^2)}$

Section 7 - Serial port interface.


With the following circuit between PC and the TILT001-2AO-UART it is possible to setup a communication link.


Connections printed circuit board top view :

Connections printed circuit board bottom view :

Section 8 - Pin configuration ADXL213

STANDARD LEGAL STUFF

Although this product has been thoroughly tested by **P.Tilma Hardware/Software Engineering**, we cannot take responsibility for this product, nor will we take any responsibility for anything happening as a result of using this product.

Performance information:

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of this product as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

Single copy license:

You may download copies of the information or software ("Materials") found on

P.Tilma Hardware/Software Engineering sites on a single computer for your personal, non-commercial internal use only. This is a license, not a transfer of title, and is subject to the following restrictions. You may not:

- (a) Modify the Materials or use them for any commercial purpose, or any public display, performance, sale or rental.
- (b) Decompile, reverse engineer, or disassemble software Materials.
- (c) Remove any copyright or other proprietary notices from the Materials.
- (d) Transfer the Materials to another person. You agree to prevent any unauthorized copying of the Materials.

Ownership of Materials:

This product is copyrighted and is protected by worldwide copyright laws and treaty provisions. They may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without **P.Tilma Hardware/Software Engineering** prior written permission.

Disclaimer:

The materials are provided "as is" without any express or implied warranty of any kind including warranties of merchantability, noninfringement of intellectual property, or fitness for any particular purpose. In no event shall **P.Tilma Hardware/Software Engineering**, or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information) arising out of the use of or inability to use the materials, even if **P.Tilma Hardware/Software Engineering** has been advised of the possibility of such damages.

P.Tilma Hardware/Software Engineering further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. **P.Tilma Hardware/Software Engineering** may make changes to these materials, or to the products described therein, at any time without notice. **P.Tilma Hardware/Software Engineering** makes no commitment to update the Materials.